ISHS


Acta
Horticulturae
Home


Login
Logout
Status


Help

ISHS Home

ISHS Contact

Consultation
statistics
index


Search
 
ISHS Acta Horticulturae 893: International Symposium on High Technology for Greenhouse Systems: GreenSys2009

LIGHT USE EFFICIENCY AT DIFFERENT WAVELENGTHS IN ROSE PLANTS

Authors:   R. Paradiso, E. Meinen, J.F.H. Snel, L.F.M. Marcelis, W. van Ieperen, S.W. Hogewoning
Keywords:   action spectrum, assimilation light, leaf optical properties, LED, light quality photosynthesis
DOI:   10.17660/ActaHortic.2011.893.93
Abstract:
Current knowledge about the spectral dependence of leaf light use efficiency of leaf photosynthesis (LUE; rate of leaf photosynthesis per unit incident light energy) is based on investigations of mostly arable crops. The leaf LUE depends on the optical properties of the leaf (light absorption), on the fraction of light energy absorbed by photosynthetically active pigments and on the excitation balance of the two photosystems. These properties have hardly been investigated on modern vegetable and especially ornamental greenhouse crops. In this research we investigated the action spectrum of leaf photosynthesis and related leaf optical properties of reddish young leaves and green middle aged leaves of rose ‘Akito’. The crop was grown in a heated greenhouse in Wageningen (The Netherlands, latitude 52°N). The green and reddish leaves had similar total absorptance of 87% on average in the PAR range (400 to 700 nm). In the green leaves, however, leaf absorptance around 550 nm was lower than in the reddish leaves, but slightly higher at longer wavelengths. Red light of 680 nm was found to be the most effective for leaf photosynthesis in the short term. Leaf LUEs were calculated for supplemental light by HPS and 645 and 680 nm LEDs based on their emission spectra and the measured action spectra of leaf photosynthesis. These calculations showed that a 645 nm LED light yielded more improvement in LUE compared to HPS light than 680 nm LED light. This is because the 680 nm LED also emits light >700 nm at which the LUE is much lower. If these calculated improvements in leaf LUE for red LED-light compared to HPS-light are sustained at the crop level during prolonged illumination, substantial energy savings may be realized in rose by supplemental lighting with red LED light.

Download Adobe Acrobat Reader (free software to read PDF files)

893_92     893     893_94

URL www.actahort.org      Hosted by KU Leuven      © ISHS