|
|
Authors: | J. Puértolas, I.C. Dodd, M.C. Conesa |
Keywords: | PRD, ABA, root-to-shoot signalling, root water uptake, stomatal conductance, irrigation, Phaseolus vulgaris |
DOI: | 10.17660/ActaHortic.2016.1112.21 |
Abstract:
Partial root-zone drying (PRD) is predicted to increase ABA concentration in the xylem sap ([X-ABA]) without changing leaf water status, thus partially closing the stomata which may enhance plant water use efficiency.
Predicting ([X-ABA]) from soil moisture and root distribution data are essential to optimize the application of this technique.
Bean (Phaseolus vulgaris) plants were grown in split pots, designed to allow a wide range of root mass distribution to either compartment, and PRD was applied. [X-ABA] was best predicted with an exponential model using the weighted (by root water uptake fraction - RWUF) average of root ABA concentration ([R-ABA]) in each compartment.
This confirmed previous results reporting that a model accounting for RWUF is the best predictor of [X-ABA]. RWUF was equal to root mass fraction (RMF) when soil volumetric water content (θv) in the dry compartment was above 0.18 cm3 cm-3, linearly related to RMF when θv<0.18 and RMF>0.7, and null otherwise. [R-ABA] in the dry side had basal values (of 100-150 ng g-1 DW) when θv>0.18 and increased linearly with RMF above that threshold.
Therefore, the proportion of roots in dry soil affected [X-ABA] by increasing both root water uptake fraction and ABA accumulation. [R-ABA] in the wet side was also stable when the dry side had θv>0.18 but was linearly related to local θv above that threshold and not to RMF. Simulation modelling showed that irrigating more than 1/3 of the total root mass during PRD had little impact on [X-ABA].
|
Download Adobe Acrobat Reader (free software to read PDF files) |
|