ISHS


Acta
Horticulturae
Home


Login
Logout
Status


Help

ISHS Home

ISHS Contact

Consultation
statistics
index


Search
 
ISHS Acta Horticulturae 807: International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate

GREENHOUSE TECHNOLOGY FOR SUSTAINABLE PRODUCTION IN MILD WINTER CLIMATE AREAS: TRENDS AND NEEDS

Authors:   J.I. Montero, C. Stanghellini, N. Castilla
Keywords:   ventilation, screens, NIR radiation, CO2 enrichment, life cycle assessment
DOI:   10.17660/ActaHortic.2009.807.1
Abstract:
Greenhouse production in the near future will need to reduce significantly its environmental impact. For this purpose, elements such as the structure, glazing materials, climate equipments and controls have to be developed and wisely managed to reduce the dependence on fossil fuels, achieve maximum use of natural resources such as solar radiation and water, and minimize the input of chemicals and fertilizers. This paper discusses the most relevant developments in greenhouse technology for mild winter climates. Regarding greenhouse structures, recent studies based on computational fluid dynamics have been conducted to investigate the effect of parameters such as ventilator size and arrangement, roof slope and greenhouse width and height on the air exchange rate. Next generation greenhouses are expected to incorporate some of the innovations derived from recent ventilation studies. Covering crops with screens is becoming a common practice. Main advantages and limitations of screenhouses are discussed in this paper. Thermal storage is increasingly applied in closed or semi-closed greenhouses. Under some conditions semi-closed greenhouses could mitigate day/night while reducing the use of water and the entrance of pest. Photo selective films that reflect a fraction of NIR radiation are effective at lowering greenhouse temperature and, in some cases, may be cost effective. NIR reflective films have side effects of major importance in greenhouse production. The CO2 enrichment strategy in computer-controlled greenhouses is based on determining the benefits of increasing the CO2 concentration against the cost of it. No clear strategies have been defined for the application of CO2 in unheated greenhouses, where most of the time the source of carbon dioxide is the external air. Some authors suggest ventilating as little as possible and fertilizing with bottled carbon dioxide at least up to the external concentration. Improving greenhouses by introducing new technologies may have an additional impact on the environment. From an environmental point of view, the incorporation of technology needs to increase yield to compensate for its associated environmental burden. Previous results have shown that forced ventilation and heating are the main reasons for the increase in environmental impact in climate controlled greenhouses. Additional results on the area of technology and its associated impact are discussed in this paper.

Download Adobe Acrobat Reader (free software to read PDF files)

    807     807_2

URL www.actahort.org      Hosted by KU Leuven LIBIS      © ISHS